论文标题
绘画中图像分类的数据集和卷积模型
A Data Set and a Convolutional Model for Iconography Classification in Paintings
论文作者
论文摘要
艺术中的肖像学是研究艺术品的视觉内容以确定其主题和主题的视觉内容,并表征了这些主题的代表方式。它是出于各种目的的积极研究的主题,包括对含义的解释,代表时代和空间中的起源和扩散的研究以及对艺术家和艺术作品的影响的研究。随着数字图像的数字档案的扩散,将计算机视觉技术应用于前所未有的规模的艺术图像分析的可能性,这可能支持偶像研究和教育。在本文中,我们介绍了一个新颖的绘画数据集,以进行肖像学分类,并提出了将卷积神经网络(CNN)分类器应用于识别艺术品的象征学的定量定性结果。拟议的分类器在识别基督教宗教绘画中的圣徒的任务中,取得了良好的表现(71.17%的精度,70.89%的召回,70.25%的F1得分和72.73%的平均精度),这一任务因具有非常相似的视觉特征的课程而变得困难。对结果的定性分析表明,CNN专注于传统的标志性图案,这些图案表征了每个圣徒的表示,并利用了此类提示以获得正确的识别。我们工作的最终目的是使图像学元素的自动提取,分解和比较,以支持肖像研究和自动艺术工作注释。
Iconography in art is the discipline that studies the visual content of artworks to determine their motifs and themes andto characterize the way these are represented. It is a subject of active research for a variety of purposes, including the interpretation of meaning, the investigation of the origin and diffusion in time and space of representations, and the study of influences across artists and art works. With the proliferation of digital archives of art images, the possibility arises of applying Computer Vision techniques to the analysis of art images at an unprecedented scale, which may support iconography research and education. In this paper we introduce a novel paintings data set for iconography classification and present the quantitativeand qualitative results of applying a Convolutional Neural Network (CNN) classifier to the recognition of the iconography of artworks. The proposed classifier achieves good performances (71.17% Precision, 70.89% Recall, 70.25% F1-Score and 72.73% Average Precision) in the task of identifying saints in Christian religious paintings, a task made difficult by the presence of classes with very similar visual features. Qualitative analysis of the results shows that the CNN focuses on the traditional iconic motifs that characterize the representation of each saint and exploits such hints to attain correct identification. The ultimate goal of our work is to enable the automatic extraction, decomposition, and comparison of iconography elements to support iconographic studies and automatic art work annotation.