论文标题

有效的广义球形CNN

Efficient Generalized Spherical CNNs

论文作者

Cobb, Oliver J., Wallis, Christopher G. R., Mavor-Parker, Augustine N., Marignier, Augustin, Price, Matthew A., d'Avezac, Mayeul, McEwen, Jason D.

论文摘要

计算机视觉和自然科学的许多问题都需要对球形数据进行分析,以通过编码对旋转对称性的等效性可以有效地学习表征。我们提出了一个广义的球形CNN框架,该框架涵盖了各种现有方法,并允许它们相互利用。严格均等的唯一现有的非线性球形CNN层具有复杂性$ \ MATHCAL {O}(C^2l^5)$,其中$ c $是表示能力的量度,而球形谐波频道限制性。如此高的计算成本通常禁止使用严格的e象球形CNN。我们开发了两个新的严格均衡层,其复杂性$ \ mathcal {o}(cl^4)$和$ \ Mathcal {o}(cl^3 \ log l)$,使更大,更具表现力的模型在计算上是可行的。此外,我们采用有效的抽样理论来获得进一步的计算节省。我们表明,这些发展允许构建更具表现力的混合模型,以在球形基准问题上实现最先进的准确性和参数效率。

Many problems across computer vision and the natural sciences require the analysis of spherical data, for which representations may be learned efficiently by encoding equivariance to rotational symmetries. We present a generalized spherical CNN framework that encompasses various existing approaches and allows them to be leveraged alongside each other. The only existing non-linear spherical CNN layer that is strictly equivariant has complexity $\mathcal{O}(C^2L^5)$, where $C$ is a measure of representational capacity and $L$ the spherical harmonic bandlimit. Such a high computational cost often prohibits the use of strictly equivariant spherical CNNs. We develop two new strictly equivariant layers with reduced complexity $\mathcal{O}(CL^4)$ and $\mathcal{O}(CL^3 \log L)$, making larger, more expressive models computationally feasible. Moreover, we adopt efficient sampling theory to achieve further computational savings. We show that these developments allow the construction of more expressive hybrid models that achieve state-of-the-art accuracy and parameter efficiency on spherical benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源