论文标题

多式转移以及关于脱节语料库的判别反馈

Multi-Style Transfer with Discriminative Feedback on Disjoint Corpus

论文作者

Goyal, Navita, Srinivasan, Balaji Vasan, Natarajan, Anandhavelu, Sancheti, Abhilasha

论文摘要

通过直接或间接从源和目标域语料库中提取样式概念,通过非平行语料库在自然语言中广泛探索了样式转移。现有方法的一个普遍缺点是所有正在考虑的文体维度的联合注释的先决条件。此类数据集在各种样式的组合中的可用性将这些设置的扩展扩展到多个样式维度。虽然有可能在多种样式上层叠单维模型,但它会遭受内容损失的困扰,尤其是当样式尺寸并不完全独立时。在我们的工作中,我们通过在不同样式维度上使用独立获取的数据而没有任何其他注释来放松跨多种样式的共同注释数据的要求。我们将基于变压器的语言模型预先训练在通用语料库中的基于变压器的语言模型初始化,并通过采用多种样式的语言模型作为歧视器来增强其重写能力对多个目标样式维度。通过定量和定性评估,我们展示了模型在保留输入文本内容的同时控制多个样式维度的样式的能力。我们将其与涉及级联的最先进的Uni维风格转移模型的基准进行了比较。

Style transfer has been widely explored in natural language generation with non-parallel corpus by directly or indirectly extracting a notion of style from source and target domain corpus. A common shortcoming of existing approaches is the prerequisite of joint annotations across all the stylistic dimensions under consideration. Availability of such dataset across a combination of styles limits the extension of these setups to multiple style dimensions. While cascading single-dimensional models across multiple styles is a possibility, it suffers from content loss, especially when the style dimensions are not completely independent of each other. In our work, we relax this requirement of jointly annotated data across multiple styles by using independently acquired data across different style dimensions without any additional annotations. We initialize an encoder-decoder setup with transformer-based language model pre-trained on a generic corpus and enhance its re-writing capability to multiple target style dimensions by employing multiple style-aware language models as discriminators. Through quantitative and qualitative evaluation, we show the ability of our model to control styles across multiple style dimensions while preserving content of the input text. We compare it against baselines involving cascaded state-of-the-art uni-dimensional style transfer models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源