论文标题

人类运动填充的卷积自动编码器

Convolutional Autoencoders for Human Motion Infilling

论文作者

Kaufmann, Manuel, Aksan, Emre, Song, Jie, Pece, Fabrizio, Ziegler, Remo, Hilliges, Otmar

论文摘要

在本文中,我们提出了一个卷积自动编码器,以解决3D人体运动数据的运动填充问题。给定开始和结束序列,运动填充旨在完成两者之间的缺失间隙,以便填充的姿势可能预测开始序列并自然过渡到末端序列。为此,我们提出了一个端到端可训练的卷积自动编码器。我们表明,单个模型可用于在不同类型的活动之间创建自然过渡。此外,我们的方法不仅能够填充整个缺失的框架,而且还可以用来完成部分姿势可用的缝隙(例如,从最终效应器中)或清理其他形式的噪声(例如高斯)。同样,该模型可以填充可能长度有所不同的任意差距。此外,对模型的输出没有进一步的后处理是必需的,例如在间隙结束时平滑或闭合不连续性。我们方法的核心是将运动填充作为介入的问题的想法,并在运动序列的图像样表示上训练卷积的自动编码器。在训练时,从此类图像中删除了列的块,我们要求模型填补空白。我们通过许多复杂的运动序列证明了该方法的多功能性,并在进行彻底评估中报告了拟议方法的能力和局限性。

In this paper we propose a convolutional autoencoder to address the problem of motion infilling for 3D human motion data. Given a start and end sequence, motion infilling aims to complete the missing gap in between, such that the filled in poses plausibly forecast the start sequence and naturally transition into the end sequence. To this end, we propose a single, end-to-end trainable convolutional autoencoder. We show that a single model can be used to create natural transitions between different types of activities. Furthermore, our method is not only able to fill in entire missing frames, but it can also be used to complete gaps where partial poses are available (e.g. from end effectors), or to clean up other forms of noise (e.g. Gaussian). Also, the model can fill in an arbitrary number of gaps that potentially vary in length. In addition, no further post-processing on the model's outputs is necessary such as smoothing or closing discontinuities at the end of the gap. At the heart of our approach lies the idea to cast motion infilling as an inpainting problem and to train a convolutional de-noising autoencoder on image-like representations of motion sequences. At training time, blocks of columns are removed from such images and we ask the model to fill in the gaps. We demonstrate the versatility of the approach via a number of complex motion sequences and report on thorough evaluations performed to better understand the capabilities and limitations of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源