论文标题

使用浅卷积神经网络从RBC图像中检测到疟疾

Malaria detection from RBC images using shallow Convolutional Neural Networks

论文作者

Sarkar, Subrata, Sharma, Rati, Shah, Kushal

论文摘要

VGG-16和Resnet-50(Resnet-50)等深度学习模型的出现已经大大彻底改变了图像分类领域,并且通过使用这些卷积神经网络(CNN)体系结构,可以在各种图像数据集中获得高分类的精度。但是,这些深度学习模型具有很高的计算复杂性,因此会产生运行这些算法的高计算成本,并且很难解释结果。在本文中,我们提出了一个浅CNN结构,该结构具有与VGG-16和Resnet-50模型相同的分类准确性,用于稀薄的血液涂片RBC幻灯片图像,以检测疟疾,同时通过数量级减少计算运行时间。这可以为这些算法的商业部署提供重要优势,尤其是在非洲较贫穷的国家以及印度次大陆的某些地区,那里的疟疾威胁很严重。

The advent of Deep Learning models like VGG-16 and Resnet-50 has considerably revolutionized the field of image classification, and by using these Convolutional Neural Networks (CNN) architectures, one can get a high classification accuracy on a wide variety of image datasets. However, these Deep Learning models have a very high computational complexity and so incur a high computational cost of running these algorithms as well as make it hard to interpret the results. In this paper, we present a shallow CNN architecture which gives the same classification accuracy as the VGG-16 and Resnet-50 models for thin blood smear RBC slide images for detection of malaria, while decreasing the computational run time by an order of magnitude. This can offer a significant advantage for commercial deployment of these algorithms, especially in poorer countries in Africa and some parts of the Indian subcontinent, where the menace of malaria is quite severe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源