论文标题
由内部热源和下沉驱动的对流:超出混合长度或“最终”缩放制度的热传输
Convection driven by internal heat sources and sinks: heat transport beyond the mixing-length or "ultimate" scaling regime
论文作者
论文摘要
最近在实验中显示了由内部热源和水槽驱动的热对流,以表现出混合长度或“最终”,缩放级数:Nusselt数字$ NU $(无尺寸热通量)随着Rayleigh-number $ ra $ RA $(无尺寸无尺寸内部温度差异)的平方根的增加而增加。尽管对于标准的雷利 - 纳德对流而言,这种缩放制度被证明是努塞尔特数字上严格的上限,但我们表明,这并不是由内部来源和水槽驱动的对流。为了机智,我们引入了渐近扩展,以根据热源强度的雷利数字来得出稳定的非线性溶液,该溶液是$ ra_q $的极限。我们为简单的正弦热源说明了此过程,并表明它可以实现超出混合长度缩放制度的热传输增强:$ nu $在该分支的解决方案上用$ ra $线性地增加。使用严格的上限理论,我们证明了渐近解决方案的缩放机制$ nu \ sim ra $对应于热通量对简单动力约束的最大化,直至无尺寸的预脱位者。 2D数值模拟不仅证实了正弦源的分析解决方案,而且更令人惊讶的是,它们表明它是稳定的,并且确实通过数值调查的最高$ RA_Q $实现,其热传输效率的范围比标准混合长度长度估计值高。
Thermal convection driven by internal heat sources and sinks was recently shown experimentally to exhibit the mixing-length, or "ultimate", scaling-regime: the Nusselt number $Nu$ (dimensionless heat flux) increases as the square-root of the Rayleigh-number $Ra$ (dimensionless internal temperature difference). While for standard Rayleigh-Bénard convection this scaling regime was proven to be a rigorous upper bound on the Nusselt number, we show that this is not so for convection driven by internal sources and sinks. To wit, we introduce an asymptotic expansion to derive steady nonlinear solutions in the limit of large $Ra_Q$, the Rayleigh-number based on the strength of the heat source. We illustrate this procedure for a simple sinusoidal heat source and show that it achieves heat transport enhancement beyond the mixing-length scaling regime: $Nu$ increases linearly with $Ra$ over this branch of solutions. Using rigorous upper bound theory, we prove that the scaling regime $Nu \sim Ra$ of the asymptotic solution corresponds to a maximization of the heat flux subject to simple dynamical constraints, up to a dimensionless prefactor. Not only do 2D numerical simulations confirm the analytical solution for the sinusoidal source, but, more surprisingly, they indicate that it is stable and indeed achieved by the system up to the highest $Ra_Q$ investigated numerically, with a heat transport efficiency orders of magnitude higher than the standard mixing-length estimate.