论文标题

基于gan的无监督分割:我们是否应该匹配确切的对象数量

GAN based Unsupervised Segmentation: Should We Match the Exact Number of Objects

论文作者

Liu, Quan, Gaeta, Isabella M., Millis, Bryan A., Tyska, Matthew J., Huo, Yuankai

论文摘要

无监督的分割是生物医学图像分析中越来越流行的话题。基本思想是将监督的分割任务作为无监督的综合问题,在这种问题中,强度图像可以使用周期一致的对抗性学习将强度图像转移到注释域。先前的研究表明,两个域之间的对象数量(例如,细胞,组织,突起等)的宏级(全局分布水平)匹配导致更好的分割性能。但是,当与微观级别的确切对象数量相匹配时,尚无先前研究是否会利用无监督的分割性能会进一步提高。在本文中,我们提出了一种基于深度学习的无监督分割方法,用于分割高度重叠和动态的亚细胞微壁画。通过这项具有挑战性的任务,评估了微观级别和宏观匹配策略。为了匹配微观级别的物体数量,提出了基于新型荧光的微观匹配方法。从实验结果中,与简单的宏观匹配相比,微观匹配并不能改善分割性能。

The unsupervised segmentation is an increasingly popular topic in biomedical image analysis. The basic idea is to approach the supervised segmentation task as an unsupervised synthesis problem, where the intensity images can be transferred to the annotation domain using cycle-consistent adversarial learning. The previous studies have shown that the macro-level (global distribution level) matching on the number of the objects (e.g., cells, tissues, protrusions etc.) between two domains resulted in better segmentation performance. However, no prior studies have exploited whether the unsupervised segmentation performance would be further improved when matching the exact number of objects at micro-level (mini-batch level). In this paper, we propose a deep learning based unsupervised segmentation method for segmenting highly overlapped and dynamic sub-cellular microvilli. With this challenging task, both micro-level and macro-level matching strategies were evaluated. To match the number of objects at the micro-level, the novel fluorescence-based micro-level matching approach was presented. From the experimental results, the micro-level matching did not improve the segmentation performance, compared with the simpler macro-level matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源