论文标题

篮子推荐具有多Intertent Translation Graph神经网络

Basket Recommendation with Multi-Intent Translation Graph Neural Network

论文作者

Liu, Zhiwei, Li, Xiaohan, Fan, Ziwei, Guo, Stephen, Achan, Kannan, Yu, Philip S.

论文摘要

篮子推荐问题〜(BR)是为当前篮子推荐一份项目的排名列表。现有方法通过假设同一篮子内的项目与一个语义关系相关联,从而解决了该问题,从而优化了项目的嵌入。但是,当篮子内有多种意图时,此假设破裂。例如,假设一个篮子包含\ {\ textIt {面包,谷物,酸奶,肥皂,洗涤剂} \}其中\ {\ textit {\ textit {fextit {cret,谷物,酸奶,yogurt} \}是通过“早餐”意图进行的,而\ textit {\ textit {\ soap {破坏了模型学习嵌入的能力。要解决此问题,需要发现篮子内的意图。但是,由于篮子内的意图是潜在的,因此检索多个图模式非常具有挑战性。另外,篮子内的意图也可能是相关的。此外,发现多面图案需要建模高阶相互作用,因为不同篮子之间的意图也相关。为此,我们提出了一个名为\ textbf {m} ulti-\ textbf {i} ntent \ textbf {t} ranslation \ textbf {g} raph \ textbf {n} eural \ textbf { MITGNN型号$ t $意见为尾部实体,该实体从一个通过$ t $关系向量嵌入一个相应的篮子嵌入。通过多头聚合器来学习关系向量以处理用户和项目信息。此外,Mitgnn在我们定义的篮子图中传播了多种意图,以通过汇总邻居来学习用户和项目的嵌入。在两个现实世界数据集上进行的广泛实验证明了我们提出的模型对偏置和感应性BR的有效性。该代码可在https://github.com/jimliu96/mitgnn在线获得。

The problem of basket recommendation~(BR) is to recommend a ranking list of items to the current basket. Existing methods solve this problem by assuming the items within the same basket are correlated by one semantic relation, thus optimizing the item embeddings. However, this assumption breaks when there exist multiple intents within a basket. For example, assuming a basket contains \{\textit{bread, cereal, yogurt, soap, detergent}\} where \{\textit{bread, cereal, yogurt}\} are correlated through the "breakfast" intent, while \{\textit{soap, detergent}\} are of "cleaning" intent, ignoring multiple relations among the items spoils the ability of the model to learn the embeddings. To resolve this issue, it is required to discover the intents within the basket. However, retrieving a multi-intent pattern is rather challenging, as intents are latent within the basket. Additionally, intents within the basket may also be correlated. Moreover, discovering a multi-intent pattern requires modeling high-order interactions, as the intents across different baskets are also correlated. To this end, we propose a new framework named as \textbf{M}ulti-\textbf{I}ntent \textbf{T}ranslation \textbf{G}raph \textbf{N}eural \textbf{N}etwork~({\textbf{MITGNN}}). MITGNN models $T$ intents as tail entities translated from one corresponding basket embedding via $T$ relation vectors. The relation vectors are learned through multi-head aggregators to handle user and item information. Additionally, MITGNN propagates multiple intents across our defined basket graph to learn the embeddings of users and items by aggregating neighbors. Extensive experiments on two real-world datasets prove the effectiveness of our proposed model on both transductive and inductive BR. The code is available online at https://github.com/JimLiu96/MITGNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源