论文标题

最大平均差异测试意识到对抗性攻击

Maximum Mean Discrepancy Test is Aware of Adversarial Attacks

论文作者

Gao, Ruize, Liu, Feng, Zhang, Jingfeng, Han, Bo, Liu, Tongliang, Niu, Gang, Sugiyama, Masashi

论文摘要

最大平均差异(MMD)测试原则上可以检测到两个数据集之间的任何分布差异。但是,已经表明,MMD测试并不意识到对抗性攻击 - MMD测试未能检测到自然数据和对抗数据之间的差异。鉴于这种现象,我们提出了一个问题:自然和对抗性数据真的来自不同的分布吗?答案是肯定的 - 先前在此目的上使用MMD测试错过了三个关键因素,因此,我们提出了三个组件。首先,高斯内核具有有限的代表力,我们用有效的深内核代替它。其次,MMD测试的测试能力被忽略了,我们在渐近统计下最大程度地提高了测试能力。最后,对抗数据可能是非独立的,我们通过野生引导程序克服了这个问题。通过照顾这三个因素,我们验证了MMD测试意识到对抗性攻击,该攻击点了一条基于两样本测试的对抗数据检测的新颖道路。

The maximum mean discrepancy (MMD) test could in principle detect any distributional discrepancy between two datasets. However, it has been shown that the MMD test is unaware of adversarial attacks -- the MMD test failed to detect the discrepancy between natural and adversarial data. Given this phenomenon, we raise a question: are natural and adversarial data really from different distributions? The answer is affirmative -- the previous use of the MMD test on the purpose missed three key factors, and accordingly, we propose three components. Firstly, the Gaussian kernel has limited representation power, and we replace it with an effective deep kernel. Secondly, the test power of the MMD test was neglected, and we maximize it following asymptotic statistics. Finally, adversarial data may be non-independent, and we overcome this issue with the wild bootstrap. By taking care of the three factors, we verify that the MMD test is aware of adversarial attacks, which lights up a novel road for adversarial data detection based on two-sample tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源