论文标题
主分子安装的弹性图
Elastic Graphs for Main Molecule Matings
论文作者
论文摘要
迪伦·瑟斯顿(Dylan Thurston)的最新工作为何时在球体后有限的分支自我覆盖等同于理性地图时有条件。我们将D. Thurston的积极标准应用于合理性,以提供REES,Shishikura和Tan定理的新证明,当时一个多项式在主分子中时,关于二次多项式的兼容性。这些方法可能是理解后批判性多项式较高程度的兼容性的步骤,并演示了如何将正面标准应用于经典问题。
Recent work of Dylan Thurston gives a condition for when a post-critically finite branched self-cover of the sphere is equivalent to a rational map. We apply D. Thurston's positive criterion for rationality to give a new proof of a theorem of Rees, Shishikura, and Tan about the mateability of quadratic polynomials when one polynomial is in the main molecule. These methods may be a step in understanding the mateability of higher degree post-critically finite polynomials and demonstrate how to apply the positive criterion to classical problems.