论文标题
从点云进行表面重建的学习占用功能
Learning Occupancy Function from Point Clouds for Surface Reconstruction
论文作者
论文摘要
长时间研究了基于隐式函数的表面重建,以从从表面采样的点云中恢复3D形状。最近,在基于学习的形状重建方法中采用了签名的距离函数(SDF)和占用功能作为隐式3D形状表示。本文提出了一种从稀疏点云中学习占用功能的新方法,并在具有挑战性的表面重建任务上取得更好的性能。与以前的方法(通过完全连接的多层网络预测点占用率)不同,我们适应了点云深度学习体系结构,点卷积神经网络(PCNN),以构建我们的学习模型。具体而言,我们创建一个采样操作员并将其插入PCNN,以在需要预测占用状态的点处连续采样特征空间。这种方法本来可以获得点云数据的几何特性,并且对点排列是不变的。我们的占用功能学习可以很容易地适应点云上采样和表面重建的过程。我们的实验显示了用于使用Shapenet数据集重建的最先进的性能,并通过使用McGill 3D数据集对其进行测试,以证明该方法的良好属性。此外,我们发现学习的占用功能比以前的形状学习方法相对不变。
Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces. Recently, Signed Distance Functions (SDFs) and Occupany Functions are adopted in learning-based shape reconstruction methods as implicit 3D shape representation. This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks. Unlike the previous methods, which predict point occupancy with fully-connected multi-layer networks, we adapt the point cloud deep learning architecture, Point Convolution Neural Network (PCNN), to build our learning model. Specifically, we create a sampling operator and insert it into PCNN to continuously sample the feature space at the points where occupancy states need to be predicted. This method natively obtains point cloud data's geometric nature, and it's invariant to point permutation. Our occupancy function learning can be easily fit into procedures of point cloud up-sampling and surface reconstruction. Our experiments show state-of-the-art performance for reconstructing With ShapeNet dataset and demonstrate this method's well-generalization by testing it with McGill 3D dataset \cite{siddiqi2008retrieving}. Moreover, we find the learned occupancy function is relatively more rotation invariant than previous shape learning methods.