论文标题
学习使用基于流动的运动计划者进行最佳计划
Learning to Plan Optimally with Flow-based Motion Planner
论文作者
论文摘要
基于抽样的运动计划是许多实际机器人应用中的主要范式,但其性能极大地取决于样品的质量。大多数传统规划师都使用非信息抽样分布,而不是利用问题中的结构和模式来指导更好的采样策略。此外,由于C空间和运动计划配置的稀疏性和高度变化的性质,大多数当前基于学习的计划者都容易受到后塌陷或模式崩溃的影响。在这项工作中,我们引入了通过以前的经验中学到的有条件基于流动的基于流动的分布,以改善这些方法的采样。我们的分布可以在当前的问题实例上进行条件,以提供有希望区域内采样配置的信息。当我们用专家计划者训练采样器时,所得的分布通常几乎是最佳的,并且计划者可以更快地找到解决方案,而无效的样本较少,初始成本较小。基于流动的分布使用简单的可逆转换,在计算上非常有效,并且我们的优化公式明确避免了模式与其他基于学习的计划者形成鲜明对比的模式。最后,我们提供了一个公式和理论基础,以从分布中有效采样。并在实验上证明,通过使用我们的基于流动的分布,可以更快地找到解决方案,并以较少的样本和更好的整体运行时性能找到解决方案。
Sampling-based motion planning is the predominant paradigm in many real-world robotic applications, but its performance is immensely dependent on the quality of the samples. The majority of traditional planners are inefficient as they use uninformative sampling distributions as opposed to exploiting structures and patterns in the problem to guide better sampling strategies. Moreover, most current learning-based planners are susceptible to posterior collapse or mode collapse due to the sparsity and highly varying nature of C-Space and motion plan configurations. In this work, we introduce a conditional normalising flow based distribution learned through previous experiences to improve sampling of these methods. Our distribution can be conditioned on the current problem instance to provide an informative prior for sampling configurations within promising regions. When we train our sampler with an expert planner, the resulting distribution is often near-optimal, and the planner can find a solution faster, with less invalid samples, and less initial cost. The normalising flow based distribution uses simple invertible transformations that are very computationally efficient, and our optimisation formulation explicitly avoids mode collapse in contrast to other existing learning-based planners. Finally, we provide a formulation and theoretical foundation to efficiently sample from the distribution; and demonstrate experimentally that, by using our normalising flow based distribution, a solution can be found faster, with less samples and better overall runtime performance.