论文标题

凸几何的公正成就游戏

Impartial Achievement Games on Convex Geometries

论文作者

McCoy, Stephanie, Sieben, Nándor

论文摘要

我们研究了一个游戏,其中两个玩家轮流选择了凸几何的点,直到共同选择的点的凸关闭包含给定获胜的所有点为止。游戏的获胜者是最后能够移动的球员。我们为这些游戏开发了一个结构理论,并使用它来确定几类凸几何形状的NIM数字,包括一维仿射几何,树木的顶点几何以及具有胜利集的游戏。

We study a game where two players take turns selecting points of a convex geometry until the convex closure of the jointly selected points contains all the points of a given winning set. The winner of the game is the last player able to move. We develop a structure theory for these games and use it to determine the nim number for several classes of convex geometries, including one-dimensional affine geometries, vertex geometries of trees, and games with a winning set consisting of extreme points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源