论文标题

霍夫史塔特模型的三维非阿布尔概括:自旋轨道耦合蝴蝶三重奏

Three-dimensional non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly trios

论文作者

Liu, Vincent, Yang, Yi, Joannopoulos, John D., Soljačić, Marin

论文摘要

我们从理论上介绍并研究了三维霍夫史塔特模型,其沿所有三个维度都具有线性变化的非亚伯仪势。该模型可以解释为三个Hofstadter Butterfly对之间的旋转轨道耦合,因为每个笛卡尔表面($ xy $,$ yz $或$ ZX $)的模型将模型减少到二维非阿比尔霍夫史塔特问题。通过评估所有轴周围任意循环操作员之间的交通值,我们得出了其真实的(必要和足够)的非亚伯利亚条件,即,在三个跳跃阶段中,至少有两个不应为0或$π$。在阿贝尔人或非阿贝尔政权中的仪表场的不同选择下,该模型中都鉴定出弱和强拓扑绝缘阶段。

We theoretically introduce and study a three-dimensional Hofstadter model with linearly varying non-Abelian gauge potentials along all three dimensions. The model can be interpreted as spin-orbit coupling among a trio of Hofstadter butterfly pairs since each Cartesian surface ($xy$, $yz$, or $zx$) of the model reduces to a two-dimensional non-Abelian Hofstadter problem. By evaluating the commutativity among arbitrary loop operators around all axes, we derive its genuine (necessary and sufficient) non-Abelian condition, namely, at least two out of the three hopping phases should be neither 0 nor $π$. Under different choices of gauge fields in either the Abelian or the non-Abelian regime, both weak and strong topological insulating phases are identified in the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源