论文标题

nullKähler几何形状和异构粒细胞变形

Null Kähler geometry and isomonodromic deformations

论文作者

Dunajski, Maciej

论文摘要

我们构建了null-kähler指标的正常形式:伪 - 利马尼亚指标,该指标承认切线束的兼容平行nilpotent内态。这样的指标是非里曼尼亚人全能降低的例子,并且(在复杂的环境中)出现在卡拉比野野模量三倍的bridgeland稳定性条件下。 使用Twistor方法,我们表明,在第四维(与分散性集成性之间存在联系的情况下),共同体 - 一个反自我的二极管null-kähler指标通常以painlevéI或ParachlevéIIodes的解决方案为特征。

We construct the normal forms of null-Kähler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified setting) appear in the Bridgeland stability conditions of the moduli spaces of Calabi-Yau three-folds. Using twistor methods we show that, in dimension four - where there is a connection with dispersionless integrability - the cohomogeneity-one anti-self-dual null-Kähler metrics are generically characterised by solutions to Painlevé I or Painlevé II ODEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源