论文标题

玻璃中相互作用激发相互作用的平均场模型

Mean-field model of interacting quasilocalized excitations in glasses

论文作者

Rainone, Corrado, Urbani, Pierfrancesco, Zamponi, Francesco, Lerner, Edan, Bouchbinder, Eran

论文摘要

结构玻璃具有准化激发,其频率$ω$遵循状态的通用密度$ {\ cal d}(ω)\!\ sim \!ω^4 $。然而,这种普遍性背后的基本物理学尚未完全理解。在这里,我们研究了玻璃中的准钙化激发的平均场模型,被视为嵌入弹性介质内的颗粒组,并将其统称为非谐波振荡器。在没有相互作用的情况下,振荡器的谐波刚度取自相当毫无特色的概率分布(上截止$κ_0$),它们通过随机耦合(以强度$ j $为特征)和周围的弹性介质(以恒定力$ h $为特征的相互作用)。我们首先表明该模型产生了状态的无间隙密度,$ {\ cal d}(ω)\!= \!然后 - 使用缩放理论和数值模拟 - 我们提供了振荡器相互作用诱导的平方位移和出现的特征性频率的振荡器相互作用诱导的相互作用诱导的均值频率的非全额外因素$ a _ {\ rm g}(H,J,κ_0)$的完整理解。特别是,我们表明$ a _ {\ rm g}(h,j,κ_0)$是固定$ h $的$ j $的非单调函数,主要在$ - $ - (κ__0h^{2/3}} \!/j^2)中,在弱$ j $ j $ j $ jemistime-remine中 - emimimime-remimimime-jemincemimime-yminime-j^{2/3} \!/j^2)在$ h $没有任何角色的政权中,作为大型$ j $的幂律衰败。我们讨论了该模型的物理解释及其与结构眼镜中可用观察结果的可能关系,并描述了一些未来的研究方向。

Structural glasses feature quasilocalized excitations whose frequencies $ω$ follow a universal density of states ${\cal D}(ω)\!\sim\!ω^4$. Yet, the underlying physics behind this universality is not fully understood. Here we study a mean-field model of quasilocalized excitations in glasses, viewed as groups of particles embedded inside an elastic medium and described collectively as anharmonic oscillators. The oscillators, whose harmonic stiffness is taken from a rather featureless probability distribution (of upper cutoff $κ_0$) in the absence of interactions, interact among themselves through random couplings (characterized by strength $J$) and with the surrounding elastic medium (an interaction characterized by a constant force $h$). We first show that the model gives rise to a gapless density of states ${\cal D}(ω)\!=\!A_{\rm g}\,ω^4$ for a broad range of model parameters, expressed in terms of the strength of stabilizing anharmonicity, which plays a decisive role in the model. Then -- using scaling theory and numerical simulations -- we provide a complete understanding of the non-universal prefactor $A_{\rm g}(h,J,κ_0)$, of the oscillators' interaction-induced mean square displacement and of an emerging characteristic frequency, all in terms of properly identified dimensionless quantities. In particular, we show that $A_{\rm g}(h,J,κ_0)$ is a nonmonotonic function of $J$ for a fixed $h$, varying predominantly exponentially with $-(κ_0 h^{2/3}\!/J^2)$ in the weak interactions (small $J$) regime -- reminiscent of recent observations in computer glasses -- and predominantly decaying as a power-law for larger $J$, in a regime where $h$ plays no role. We discuss the physical interpretation of the model and its possible relations to available observations in structural glasses, along with delineating some future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源