论文标题

固定程度的唯一图形中的独特最大独立集

Unique maximum independent sets in graphs on monomials of a fixed degree

论文作者

Machacek, John

论文摘要

我们考虑在$ n $变量$ d $ $ n $变量的单元中的图形,当时两个单一元素在且只有其最小常见的倍数具有$ d+1 $的情况下。我们证明,当$ n = 3 $和$ d $可除$ 3 $时,以及当$ n = 4 $和$ d $的时候,这些图甚至具有独特的最大独立集。还考虑了这些图中的主导地位,我们猜想在所有情况下,统治数和独立的统治数有平等。

We consider graphs on monomials in $n$ variables of a fixed degree $d$ where two monomials are adjacent if and only if their least common multiple has degree $d+1$. We prove that when $n = 3$ and $d$ is divisible by $3$ as well as when $n=4$ and $d$ is even that these graphs have a unique maximum independent set. Domination in these graphs is also considered, and we conjecture that there is equality of the domination number and independent domination number in all cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源