论文标题
量子劳奇 - 螺旋杆式平滑状态
The Quantum Rauch-Tung-Striebel Smoothed State
论文作者
论文摘要
平滑是一种使用估计时间之前和后面的测量信息来估算系统状态的技术。该技术的两个值得注意的例子是线性高斯系统的Rauch-Tung-Striebel和Mayne-Fraser-Potter平滑技术,都导致了状态的最佳平滑估计。但是,在考虑量子系统时,经典的平滑技术可能会导致估计不是有效的量子状态。因此,针对量子系统明确开发了不同的平滑理论。此理论此后已应用于线性高斯量子(LGQ)系统的特殊情况,在这种情况下,在得出LGQ状态平滑方程时,使用了Mayne-Fraser-Potter技术。结果,描述平滑状态的最终方程与经典的Mayne-Fraser-Potter平滑方程密切相关。在本文中,我得出了量子状态平滑方程的等效朗格 - 螺旋形式,这进一步简化了LGQ系统中平滑量子状态的计算。此外,LGQ平滑方程的新形式揭示了平滑的量子状态的特性,该量子态隐藏在Mayne-Fraser-Potter形式中,这是平滑平均值的无差异性。通过识别平滑平均值的非差异部分,我能够得出必要且充分的条件,以使量子平滑的平均值在稳态状态下可区分。
Smoothing is a technique that estimates the state of a system using measurement information both prior and posterior to the estimation time. Two notable examples of this technique are the Rauch-Tung-Striebel and Mayne-Fraser-Potter smoothing techniques for linear Gaussian systems, both resulting in the optimal smoothed estimate of the state. However, when considering a quantum system, classical smoothing techniques can result in an estimate that is not a valid quantum state. Consequently, a different smoothing theory was developed explicitly for quantum systems. This theory has since been applied to the special case of linear Gaussian quantum (LGQ) systems, where, in deriving the LGQ state smoothing equations, the Mayne-Fraser-Potter technique was utilised. As a result, the final equations describing the smoothed state are closely related to the classical Mayne-Fraser-Potter smoothing equations. In this paper, I derive the equivalent Rauch-Tung-Striebel form of the quantum state smoothing equations, which further simplify the calculation for the smoothed quantum state in LGQ systems. Additionally, the new form of the LGQ smoothing equations bring to light a property of the smoothed quantum state that was hidden in the Mayne-Fraser-Potter form, the non-differentiablilty of the smoothed mean. By identifying the non-differentiable part of the smoothed mean, I was then able to derive a necessary and sufficient condition for the quantum smoothed mean to be differentiable in the steady state regime.