论文标题
通过自旋方向对磁性和电子结构进行强烈调整
Strong tuning of magnetism and electronic structure by spin orientation
论文作者
论文摘要
有效操纵磁性是现代冷凝物理物理学的关键物理问题,这对于磁功能应用也至关重要。大多数以前的相关研究都依赖于自旋纹理的调整,而旋转方向通常可以忽略不计。例外,自旋轨道耦合$ j _ {\ rm eff} $ $ 4D $/$ 5D $电子的状态为紧急量子效应提供了理想的平台。但是,由于真实材料的复杂性,尚未实现许多期望。因此,对更理想的$ j _ {\ rm eff} $状态的追求仍在继续。在这里,在Hexachloro niobates家族中预测了一个近乎理想的$ J _ {\ rm eff} $ = $ 3/2 $ mott绝缘阶段,该阶段避免了钙钛矿氧化物的一些共同缺点。自旋和轨道成分之间几乎补偿了局部磁矩,从而使异国情调的隐性磁力降低。更有趣的是,可以通过旋转旋转轴对电子结构和磁性进行强烈调节,这对于自旋应用很少见,但至关重要。
To efficiently manipulate magnetism is a key physical issue for modern condensed matter physics, which is also crucial for magnetic functional applications. Most previous relevant studies rely on the tuning of spin texture, while the spin orientation is often negligible. As an exception, spin-orbit coupled $J_{\rm eff}$ states of $4d$/$5d$ electrons provide an ideal platform for emergent quantum effects. However, many expectations have not been realized due to the complexities of real materials. Thus the pursuit for more ideal $J_{\rm eff}$ states remains ongoing. Here a near-ideal $J_{\rm eff}$=$3/2$ Mott insulating phase is predicted in the family of hexachloro niobates, which avoid some common drawbacks of perovskite oxides. The local magnetic moment is nearly compensated between spin and orbital components, rendering exotic recessive magnetism. More interestingly, the electronic structure and magnetism can be strongly tuned by rotating spin axis, which is rare but crucial for spintronic applications.