论文标题

扩展介质的陡峭密度梯度中的球形冲击

Spherical shocks in a steep density gradient of expanding media

论文作者

Govreen-Segal, Taya, Nakar, Ehud, Levinson, Amir

论文摘要

我们研究了牛顿冲击在球形对称,同源扩展的弹出中的传播。我们专注于具有陡峭的幂律密度概况的媒体,形式为$ρ\ propto t^{ - 3} v^{ - α} $,带有$α> 5 $,其中$ v $是扩展介质的速度,而$ t $是时间。预计在超新星弹射器的前缘和二进制中子星星合并的亚相关性流出的前缘。我们发现,由于陡峭的密度剖面,这种冲击总是在观察者框架中加速,并且与大部分驾驶员气体失去因果接触。但是,延长的冲击进化表现出了两种不同的途径:一方面,电击强度会随着时间的流逝而降低,直到电击最终消失。另一方面,冲击强度稳步增加,解决方案接近冲击的自相似溶液是静态介质。通过映射冲击溶液的参数空间,我们发现进化途径由$α$以及冲击速度与局部上游速度之间的初始比例决定。我们发现,对于$α<ω_c$($ω_c\ \ 8 $),冲击总是衰减的,对于$α>ω_c$,震动可能会根据速度比的初始值而衰减或增长更强。这两个分支从分析得出的自相似溶液分叉以恒定速度比。我们分析了可能影响此类系统的观察性特征的溶液的性质,并评估衰减冲击以从有限培养基中爆发所需的条件。

We study the propagation of a Newtonian shock in a spherically symmetric, homologously expanding ejecta. We focus on media with a steep power-law density profile of the form $ρ\propto t^{-3}v^{-α}$, with $α>5$, where $v$ is the velocity of the expanding medium and $t$ is time. Such profiles are expected in the leading edge of supernovae ejecta and sub-relativistic outflows from binary neutron star mergers. We find that such shocks always accelerate in the observer frame and lose causal contact with the bulk of the driver gas, owing to the steep density profile. However, the prolonged shock evolution exhibits two distinct pathways: In one, the shock strength diminishes with time until the shock eventually dies out. In the other, the shock strength steadily increases, and the solution approaches the self-similar solution of a shock is a static medium. By mapping the parameter space of shock solutions, we find that the evolutionary pathways are dictated by $α$ and by the initial ratio between the shock velocity and the local upstream velocity. We find that for $α<ω_c$ ($ω_c \approx 8$), the shock always decays, and that for $α>ω_c$ the shock may decay or grow stronger depending on the initial value of the velocity ratio. These two branches bifurcate from a self-similar solution derived analytically for a constant velocity ratio. We analyze properties of the solutions that may have an impact on the observational signatures of such systems, and assess the conditions required for decaying shocks to break out from a finite medium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源