论文标题

恒星聚类塑造行星系统的体系结构

Stellar clustering shapes the architectures of planetary systems

论文作者

Winter, Andrew J., Kruijssen, J. M. Diederik, Longmore, Steven N., Chevance, Mélanie

论文摘要

通常用包含宿主恒星和原球盘的系统来描述行星形成,其中内部特性(例如质量和金属性)确定了所得行星系统的性质。然而,(原始)行星系统被预测并观察到会受到空间簇的恒星形成环境的影响,即通过动态的星星相互作用或附近的大型巨星外部光蒸发。量化行星系统的结构如何受这些环境过程的影响是一项挑战,因为恒星群体在<10亿年内在空间上分散,远低于最著名的系外行星的年龄。在这里,我们在盖亚卫星的天体数据中确定了围绕外部球星宿主星周围的旧,共同移动的恒星组,并证明行星系统的结构对位置 - 速度相位空间中的局部恒星聚类表现出很大的依赖,这意味着依赖其形成或进化环境。在控制主机恒星时代,质量,金属性和距离太阳的距离之后,我们获得了高度显着的差异($ p $ - 价值为$ 10^{ - 5} { - } { - } 10^{ - 2} $在行星(系统)(系统)属性中,相位空间太空过高和现场之间。过度繁殖的行星中位半轴轴和轨道周期分别为0.087 AU和9.6天,而田间恒星周围的行星则为0.81 AU和154天。 “热木星”(巨大的,近距离的行星)主要存在于恒星相位的过度,强烈表明它们的极端轨道源于环境扰动,而不是内部迁移或行星空间散射。我们的发现表明,恒星聚类是设定行星系统体系结构的关键因素。

Planet formation is generally described in terms of a system containing the host star and a protoplanetary disc, of which the internal properties (e.g. mass and metallicity) determine the properties of the resulting planetary system. However, (proto)planetary systems are predicted and observed to be affected by the spatially-clustered stellar formation environment, either through dynamical star-star interactions or external photoevaporation by nearby massive stars. It is challenging to quantify how the architecture of planetary systems is affected by these environmental processes, because stellar groups spatially disperse within <1 billion years, well below the ages of most known exoplanets. Here we identify old, co-moving stellar groups around exoplanet host stars in the astrometric data from the Gaia satellite and demonstrate that the architecture of planetary systems exhibits a strong dependence on local stellar clustering in position-velocity phase space, implying a dependence on their formation or evolution environment. After controlling for host stellar age, mass, metallicity, and distance from the Sun, we obtain highly significant differences (with $p$-values of $10^{-5}{-}10^{-2}$) in planetary (system) properties between phase space overdensities and the field. The median semi-major axis and orbital period of planets in overdensities are 0.087 au and 9.6 days, respectively, compared to 0.81 au and 154 days for planets around field stars. 'Hot Jupiters' (massive, close-in planets) predominantly exist in stellar phase space overdensities, strongly suggesting that their extreme orbits originate from environmental perturbations rather than internal migration or planet-planet scattering. Our findings reveal that stellar clustering is a key factor setting the architectures of planetary systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源