论文标题
Van der waals抗fiferromagnet mnps3中的超快电流和现场驱动的域壁动力学
Ultrafast current and field driven domain-wall dynamics in van der Waals antiferromagnet MnPS3
论文作者
论文摘要
在二维(2D)范德华(VDW)材料中发现磁性的磁性蓬勃发展,这是磁性基本问题的新努力以及计算,传感和存储技术的潜在应用。特别令人感兴趣的是抗铁磁铁,由于它们的固有性抗铁磁交换耦合,它们在诸如对外部磁扰动的鲁棒性(例如鲁棒性)方面显示出几个优势。该特性是抗铁磁铁的基石之一,暗示着在抗铁磁域中存储的信息对于施加磁场是不可见的,从而防止其被删除或操纵。在这里,我们表明,尽管有这种基本的理解,但可以通过外部磁场和电流控制最近发现的VDW MNPS3抗铁磁铁的磁域。我们实现了超过1500 m/s和3000 m/s的速度的超快域壁动力学。两种域壁动力学都取决于边缘终端,后者在蜂窝结构的潜在对称性下产生了无补偿的旋转。我们发现,属于不同磁性旋转的边缘原子可作为几何限制,以防止壁的位移,而在材料的两个边缘上都具有相同sublattice的原子的原子可以实现野外驱动的域壁运动,这仅受到25台抗fillomagnet的自旋过渡的限制。 sublattices存在于边界(例如扶手椅边缘)。我们的结果表明,在实际应用程序中实现2D VDW反铁磁铁需要工程层边缘的工程,这可以在Ultrathin设备平台中具有前所未有的功能功能。
The discovery of magnetism in two-dimensional (2D) van der Waals (vdW) materials has flourished a new endeavour of fundamental problems in magnetism as well as potential applications in computing, sensing and storage technologies. Of particular interest are antiferromagnets, which due to their intrinsic antiferromagnetic exchange coupling show several advantages in relation to ferromagnets such as robustness against external magnetic perturbations. This property is one of the cornerstones of antiferromagnets and implies that information stored in antiferromagnetic domains is invisible to applied magnetic fields preventing it from being erased or manipulated. Here we show that, despite this fundamental understanding, the magnetic domains of recently discovered vdW MnPS3 antiferromagnet can be controlled via external magnetic fields and currents. We realize ultrafast domain-wall dynamics with velocities up to 1500 m/s and 3000 m/s respectively to a broad range of fields and current densities. Both domain wall dynamics are determined by the edge terminations which generated uncompensated spins following the underlying symmetry of the honeycomb structure. We find that edge atoms belonging to different magnetic sublattices function as geometrical constrictions preventing the displacement of the wall, whereas having atoms of the same sublattice at both edges of the material allows for the field-driven domain wall motion which is only limited by the spin-flop transition of the antiferromagnet beyond 25 T. Conversely, electric currents can induce motion of domain walls in most of the edges except those where the two sublattices are present at the borders (e.g. armchair edges). Our results indicate that the implementation of 2D vdW antiferromagnets in real applications requires the engineering of the layer edges which enables an unprecedented functional feature in ultrathin device platforms.