论文标题

高斯和四元环中的代数性特性

Combined Algebraic Properties in Gaussian and Quaternion Ring

论文作者

Chakraborty, Aninda

论文摘要

众所周知,对于IP^{*}设置了A in(\ Mathbb {n},+),然后序列\ left \ langle x_ {n} \ rangle _ {n = 1}^{\ rangle _ { \左\ langle x_ {n} \ rangle _ {n = 1} \ rangle _ {n = 1}^{\ infty}的_ { fp \ left(\ left \ langle y_ {n} \右\ rangle _ {n = 1}^{\ infty} \ right)\ subseteq A.在中央^{*}集合中也证明了类似类型的结果类型的结果,并且序列序列已被视为序列的序列和分钟序列。在本工作中,我们的目标是建立高斯整数环和整数四元环的类似结果。

It is known that for an IP^{*} set A in (\mathbb{N},+) and a sequence \left\langle x_{n}\right\rangle _{n=1}^{\infty} in \mathbb{N}, there exists a sum subsystem \left\langle y_{n}\right\rangle _{n=1}^{\infty} of \left\langle x_{n}\right\rangle _{n=1}^{\infty} such that FS\left(\left\langle y_{n}\right\rangle _{n=1}^{\infty}\right)\cup FP\left(\left\langle y_{n}\right\rangle _{n=1}^{\infty}\right)\subseteq A. Similar types of results have also been proved for central^{*} sets and C^{*}-sets where the sequences have been considered from the class of minimal sequences and almost minimal sequences. In this present work, our aim to establish the similar type of results for the ring of Gaussian integers and the ring of integer quaternions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源