论文标题

用于机器阅读理解的双向认知思维网络

Bi-directional Cognitive Thinking Network for Machine Reading Comprehension

论文作者

Peng, Wei, Hu, Yue, Xing, Luxi, Xie, Yuqiang, Yu, Jing, Sun, Yajing, Wei, Xiangpeng

论文摘要

我们提出了一个新颖的双向认知知识框架(BCKF),用于从互补学习系统理论的角度阅读理解。它旨在模拟大脑中的两种思维方式,以回答问题,包括反向思维和惯性思维。为了验证我们的框架的有效性,我们设计了一个相应的双向认知思维网络(BCTN),以编码段落并产生一个问题(答案)给定答案(问题)并使双向知识分离。该模型具有扭转推理问题的能力,可以帮助惯性思维产生更准确的答案。在Dureader数据集中可以观察到竞争性的改进,这证实了我们的假设,即双向知识有助于质量检查任务。新颖的框架显示了机器阅读理解和认知科学的有趣观点。

We propose a novel Bi-directional Cognitive Knowledge Framework (BCKF) for reading comprehension from the perspective of complementary learning systems theory. It aims to simulate two ways of thinking in the brain to answer questions, including reverse thinking and inertial thinking. To validate the effectiveness of our framework, we design a corresponding Bi-directional Cognitive Thinking Network (BCTN) to encode the passage and generate a question (answer) given an answer (question) and decouple the bi-directional knowledge. The model has the ability to reverse reasoning questions which can assist inertial thinking to generate more accurate answers. Competitive improvement is observed in DuReader dataset, confirming our hypothesis that bi-directional knowledge helps the QA task. The novel framework shows an interesting perspective on machine reading comprehension and cognitive science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源