论文标题

基于服务质量的雷达资源管理使用深入的强化学习

Quality of service based radar resource management using deep reinforcement learning

论文作者

Durst, Sebastian, Brüggenwirth, Stefan

论文摘要

智能雷达资源管理是开发认知雷达系统的重要里程碑。基于服务的资源分配模型(Q-RAM)是一个允许智能决策的框架,但经典解决方案似乎不足以在现代雷达系统中实时应用。在本文中,我们使用深度强化学习的运行时性能提高了Q-RAM雷达资源管理问题的解决方案。

An intelligent radar resource management is an essential milestone in the development of a cognitive radar system. The quality of service based resource allocation model (Q-RAM) is a framework allowing for intelligent decision making but classical solutions seem insufficient for real-time application in a modern radar system. In this paper, we present a solution for the Q-RAM radar resource management problem using deep reinforcement learning considerably improving on runtime performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源