论文标题

Tongji大学本科生的Voxceleb演讲者认可挑战赛2020

Tongji University Undergraduate Team for the VoxCeleb Speaker Recognition Challenge2020

论文作者

Shen, Shufan, Miao, Ran, Wang, Yi, Wei, Zhihua

论文摘要

在本报告中,我们将Tongji大学本科团队的提交在2020年Interspeech 2020的Voxceleb扬声器识别挑战(VOXSRC)的近距离范围内。我们将RSBU-CW模块应用于resnet34框架上,以改善网络的能力,并在启动的环境中更好地完成培训的范围。提高模型性能的数据授权方法。在挑战评估集中,我们对两个封闭轨道的两个选定系统的融合达到了0.2973 DCF和4.9700 \%\%\%。

In this report, we discribe the submission of Tongji University undergraduate team to the CLOSE track of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020 at Interspeech 2020. We applied the RSBU-CW module to the ResNet34 framework to improve the denoising ability of the network and better complete the speaker verification task in a complex environment.We trained two variants of ResNet,used score fusion and data-augmentation methods to improve the performance of the model. Our fusion of two selected systems for the CLOSE track achieves 0.2973 DCF and 4.9700\% EER on the challenge evaluation set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源