论文标题
Tongji大学本科生的Voxceleb演讲者认可挑战赛2020
Tongji University Undergraduate Team for the VoxCeleb Speaker Recognition Challenge2020
论文作者
论文摘要
在本报告中,我们将Tongji大学本科团队的提交在2020年Interspeech 2020的Voxceleb扬声器识别挑战(VOXSRC)的近距离范围内。我们将RSBU-CW模块应用于resnet34框架上,以改善网络的能力,并在启动的环境中更好地完成培训的范围。提高模型性能的数据授权方法。在挑战评估集中,我们对两个封闭轨道的两个选定系统的融合达到了0.2973 DCF和4.9700 \%\%\%。
In this report, we discribe the submission of Tongji University undergraduate team to the CLOSE track of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020 at Interspeech 2020. We applied the RSBU-CW module to the ResNet34 framework to improve the denoising ability of the network and better complete the speaker verification task in a complex environment.We trained two variants of ResNet,used score fusion and data-augmentation methods to improve the performance of the model. Our fusion of two selected systems for the CLOSE track achieves 0.2973 DCF and 4.9700\% EER on the challenge evaluation set.