论文标题

Wasserstein K-均用于聚类层析成像预测

Wasserstein K-Means for Clustering Tomographic Projections

论文作者

Rao, Rohan, Moscovich, Amit, Singer, Amit

论文摘要

由单粒子冷冻电子显微镜(Cryo-EM)中的2D类平均问题进行的,我们基于旋转不变的WASSERSTEIN表示图像的K-Means算法。与基于欧几里得($ L_2 $)距离的现有方法不同,我们证明Wasserstein Metric可以更好地适应不同粒子视图之间的平面外角差异。我们在合成数据集上证明,与$ L_2 $基线相比,我们的方法给出了优越的结果。此外,由于使用快速线性时近似与Wasserstein-1度量标准(也称为Earthmover的距离)使用了快速线性时间近似,因此几乎没有计算上的开销。

Motivated by the 2D class averaging problem in single-particle cryo-electron microscopy (cryo-EM), we present a k-means algorithm based on a rotationally-invariant Wasserstein metric for images. Unlike existing methods that are based on Euclidean ($L_2$) distances, we prove that the Wasserstein metric better accommodates for the out-of-plane angular differences between different particle views. We demonstrate on a synthetic dataset that our method gives superior results compared to an $L_2$ baseline. Furthermore, there is little computational overhead, thanks to the use of a fast linear-time approximation to the Wasserstein-1 metric, also known as the Earthmover's distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源