论文标题

图书图的数量

The Turán number of book graphs

论文作者

Yan, Jingru, Zhan, Xingzhi

论文摘要

给定图形$ h $和一个正整数$ n,$ h $的$ h $ $ h $,$ n $ n,表示$ {\ rm ex}(n,h),$是简单的订单$ n $的最大尺寸,该订单$ n $不包含$ h $作为子Graph。带有$ p $页面的书,表示为$ b_p $,是由$ p $ triangles共享共同边缘的图表。 Bollobás和Erds在1975年开始了有关Turán数量图的研究。两个数字$ {\ rm ex}(p+2,b_p)$和$ {\ rm ex}(p+3,b_p)$由Qiao和Zhan确定。在本文中,我们确定数字$ {\ rm ex}(p+4,b_p),$ $ {\ rm ex}(p+5,b_p)$和$ {\ rm ex}(p+6,b_p),$,并表征数字$ $ {\ rm ex} $的相应的极端图$ n = p+2,\,p+3,\,p+4,\,p+5。$

Given a graph $H$ and a positive integer $n,$ the Turán number of $H$ for the order $n,$ denoted ${\rm ex}(n,H),$ is the maximum size of a simple graph of order $n$ not containing $H$ as a subgraph. The book with $p$ pages, denoted $B_p$, is the graph that consists of $p$ triangles sharing a common edge. Bollobás and Erdős initiated the research on the Turán number of book graphs in 1975. The two numbers ${\rm ex}(p+2,B_p)$ and ${\rm ex}(p+3,B_p)$ have been determined by Qiao and Zhan. In this paper we determine the numbers ${\rm ex}(p+4,B_p),$ ${\rm ex}(p+5,B_p)$ and ${\rm ex}(p+6,B_p),$ and characterize the corresponding extremal graphs for the numbers ${\rm ex}(n,B_p)$ with $n=p+2,\,p+3,\,p+4,\,p+5.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源