论文标题
同源性用琐碎的亚历山大多项式处理
Homology handles with trivial Alexander polynomial
论文作者
论文摘要
使用Freedman和Quinn的结果,用于$ \ Mathbb {Z} $ - 同源性3-Spheres,我们表明具有琐碎的Alexander多项式界限的3维同源性手柄$ S^1 \ times d^3 $。结果,具有琐碎的亚历山大多项式的杰出同源手柄在拓扑上是$ \ widetilde {h} $ - cobordant。
Using Freedman and Quinn's result for $\mathbb{Z}$-homology 3-spheres, we show that a 3-dimensional homology handle with trivial Alexander polynomial bounds a homology $S^1\times D^3$. As a consequence, a distinguished homology handle with trivial Alexander polynomial is topologically null $\widetilde{H}$-cobordant.