论文标题

产品歧管学习

Product Manifold Learning

论文作者

Zhang, Sharon, Moscovich, Amit, Singer, Amit

论文摘要

我们考虑降低维度的问题和学习两个或多个独立自由度的连续空间的数据表示。例如,当观察几个组件独立移动时,就会发生这种问题。从数学上讲,如果每个连续独立运动的参数空间是一种歧管,则它们的组合被称为乘积歧管。在本文中,我们提出了一种新的范式,用于非线性独立组件分析,称为歧管分解。我们的分解算法基于用于流形学习的光谱图和Laplacian操作员在产品空间上的可分离性。恢复多种因素会产生有意义的下维表示,并提供了一种新的方式,可以专注于数据空间的特定方面,同时忽略其他方面。我们证明了我们在结构生物学中的重要且具有挑战性的问题的潜在用途:使用冷冻电子显微镜数据集绘制蛋白质和其他大分子的运动。

We consider problems of dimensionality reduction and learning data representations for continuous spaces with two or more independent degrees of freedom. Such problems occur, for example, when observing shapes with several components that move independently. Mathematically, if the parameter space of each continuous independent motion is a manifold, then their combination is known as a product manifold. In this paper, we present a new paradigm for non-linear independent component analysis called manifold factorization. Our factorization algorithm is based on spectral graph methods for manifold learning and the separability of the Laplacian operator on product spaces. Recovering the factors of a manifold yields meaningful lower-dimensional representations and provides a new way to focus on particular aspects of the data space while ignoring others. We demonstrate the potential use of our method for an important and challenging problem in structural biology: mapping the motions of proteins and other large molecules using cryo-electron microscopy datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源