论文标题

关于决定性超表面的对称呈现的数量

On the number of symmetric presentations of a determinantal hypersurface

论文作者

Brassil, Matthew, Reichstein, Zinovy

论文摘要

A hypersurface $H$ in $\mathbb{P}^r$ of degree $n$ is called determinantal if it is the zero locus of a polynomial of the form $\operatorname{det}(x_0 A_0 + \ldots + x_r A_r)$ for some $(r+1)$-tuple of $n \times n$ matrices $A = (A_0, \ ldots,a_r)$。我们将$ a $称为$ h $的介绍。另一个演示文稿$ b =(b_0,b_1,\ ldots,b_r)$ $ h $可以通过选择$ g_1,g_1,g_2 \ in \ operatatorName {gl} _n $和设置$ b_i = g_1 a_i g_2 $,每$ i = 0,1,i = 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,y = ldots rdots rdots,r $ ldots,r $。在这种情况下,$ a $和$ b $称为同等产品。第二作者和A. vistoli表明,对于$ r \ geq 3 $,一般的决定性超出表面仅承认有限的许多演示文稿,直到等效。在本文中,我们证明了每$ r \ geq 2 $的对称演示的结果类似。在这里,需要对称矩阵$ a_0,\ ldots,a_r $和两个$(r+1)$ - $ n \ times n $ n $对称矩阵$ a =(a_0,a_1,a_1,\ ldots,a_r),a_r)$ a_1 $ a =(b_0,b_0,b_0,b_1,b_1,b_1,b_ e equive a e equive, \ operatatorName {gl} _n $,这样每$ i = 0,\ ldots,r $ $ b_i = g^{\ rm transpose} a_i g $。

A hypersurface $H$ in $\mathbb{P}^r$ of degree $n$ is called determinantal if it is the zero locus of a polynomial of the form $\operatorname{det}(x_0 A_0 + \ldots + x_r A_r)$ for some $(r+1)$-tuple of $n \times n$ matrices $A = (A_0, \ldots, A_r)$. We will refer to $A$ as a presentation of $H$. Another presentation $B = (B_0, B_1, \ldots, B_r)$ of $H$ can be obtained by choosing $g_1, g_2 \in \operatorname{GL}_n$ and setting $B_i = g_1 A_i g_2$ for every $i = 0, 1, \ldots, r$. In this case $A$ and $B$ are called equivalent. The second author and A. Vistoli have shown that for $r \geq 3$ a general determinantal hypersurface admits only finitely many presentations up to equivalence. In this paper we prove a similar result for symmetric presentations for every $r \geq 2$. Here the matrices $A_0, \ldots, A_r$ are required to be symmetric, and two $(r+1)$-tuples of $n \times n$ symmetric matrices $A = (A_0, A_1, \ldots, A_r)$ and $B = (B_0, B_1, \ldots, B_r)$ are considered equivalent if there exists a $g \in \operatorname{GL}_n$ such that $B_i = g^{\rm transpose} A_i g$ for every $i = 0, \ldots, r$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源