论文标题

平衡$ c $ - 明确锦标赛的规律条件,具有很高的最低学位的强大次级旅程

Conditions on the regularity of balanced $c$-partite tournaments for the existence of strong subtournaments with high minimum degree

论文作者

Figueroa, Ana Paulina, Montellano-Ballesteros, Juan José, Olsen, Mika

论文摘要

我们考虑了沃尔克曼(Volkmann)在2007年提出的以下问题:C-Partite Tournament必须有多大距离,以确保订单$ c $的稳固连接的子比赛?我们提供足够的条件,以平衡的$ C $ - 局部比赛的规律性,以确保具有最低学位的强大最大子场所的存在,至少$ \ left \ lfloor \ lfloor \ frac {c-2} {4} {4} \ right \ right \ rfloor \ rfloor+1 $。我们将此结果作为计算订单$ c $的子量的应用数量,该订单$ c $的订单$ c $最低(分别是分别为内)最多$ q \ geq 0 $。

We consider the following problem posed by Volkmann in 2007: How close to regular must a c-partite tournament be, to secure a strongly connected subtournament of order $c$? We give sufficient conditions on the regularity of balanced $c$-partite tournaments to assure the existence of strong maximal subtournament with minimum degree at least $\left\lfloor \frac{c-2}{4}\right\rfloor+1$. We obtain this result as an application of counting the number of subtournaments of order $c$ for which a vertex has minimum out-degree (resp. in-degree) at most $q\geq 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源