论文标题

在存在的情况下解决相对论的三体积分方程

Solving relativistic three-body integral equations in the presence of bound states

论文作者

Jackura, Andrew W., Briceño, Raúl A., Dawid, Sebastian M., Islam, Md Habib E, McCarty, Connor

论文摘要

我们提出了一种可系统地改进的方法,用于用于求解部分波投影振幅的相对论三体积分方程。该方法由动量空间中的离散过程组成,该过程近似于矩阵方程的连续性问题。它可以针对不同的矩阵大小求解,最后,采用推断来恢复连续性极限。通过解决具有$ S $波两体绑定状态的标量颗粒的三体问题,可以测试我们的技术。我们讨论了将POL贡献纳入积分方程的两种方法,这两者都与使用相同理论的有限体积光谱获得的先前结果一致。我们提供了系统错误的分析和数值估计。尽管我们专注于在三粒子阈值以下的运动学上,但我们提供了数值证据,表明所提供的方法也允许确定幅度高于该阈值。

We present a systematically improvable method for numerically solving relativistic three-body integral equations for the partial-wave projected amplitudes. The method consists of a discretization procedure in momentum space, which approximates the continuum problem with a matrix equation. It is solved for different matrix sizes, and in the end, an extrapolation is employed to restore the continuum limit. Our technique is tested by solving a three-body problem of scalar particles with an $S$ wave two-body bound state. We discuss two methods of incorporating the pole contribution in the integral equations, both of them leading to agreement with previous results obtained using finite-volume spectra of the same theory. We provide an analytic and numerical estimate of the systematic errors. Although we focus on kinematics below the three-particle threshold, we provide numerical evidence that the methods presented allow for determination of amplitude above this threshold as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源