论文标题
伪糖:设计用于语义分割的伪标签
PseudoSeg: Designing Pseudo Labels for Semantic Segmentation
论文作者
论文摘要
半监督学习(SSL)的最新进展表明,一致性正则化和伪标记的结合可以有效地提高低数据表格中的图像分类精度。与分类相比,语义细分任务需要更密集的标签成本。因此,这些任务从数据有效的培训方法中受益匪浅。但是,分割中的结构化输出会带来特殊的困难(例如,设计伪标记和增强)以应用现有的SSL策略。为了解决这个问题,我们提出了伪标记的简单新颖的重新设计,以生成精心校准的结构化伪标签,用于使用未标记或弱标记的数据进行训练。我们提出的伪标记策略是网络结构不可知,可用于一个阶段的一致性培训框架。我们证明了拟议的伪标记策略在低数据和高数据制度中的有效性。广泛的实验证实了从明智的融合来源产生的伪标签和强大的数据增强对于分割的一致性培训至关重要。源代码可从https://github.com/googleinterns/wss获得。
Recent advances in semi-supervised learning (SSL) demonstrate that a combination of consistency regularization and pseudo-labeling can effectively improve image classification accuracy in the low-data regime. Compared to classification, semantic segmentation tasks require much more intensive labeling costs. Thus, these tasks greatly benefit from data-efficient training methods. However, structured outputs in segmentation render particular difficulties (e.g., designing pseudo-labeling and augmentation) to apply existing SSL strategies. To address this problem, we present a simple and novel re-design of pseudo-labeling to generate well-calibrated structured pseudo labels for training with unlabeled or weakly-labeled data. Our proposed pseudo-labeling strategy is network structure agnostic to apply in a one-stage consistency training framework. We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes. Extensive experiments have validated that pseudo labels generated from wisely fusing diverse sources and strong data augmentation are crucial to consistency training for segmentation. The source code is available at https://github.com/googleinterns/wss.