论文标题

两次足以容纳危险特征值

Twice is enough for dangerous eigenvalues

论文作者

Horning, Andrew, Nakatsukasa, Yuji

论文摘要

我们分析了用理性过滤器靶向内部特征值的一类特征值的稳定性。我们表明,即使特征值在滤波器的杆附近,带有有理过滤器的子空间迭代也是可靠的。这些危险的特征值在第一次迭代中造成了很大的圆形错误,但在以后的迭代中是自我校正的。对于具有正交特征向量的矩阵(例如,实时对称或复杂的遗传学),两次迭代足以将圆形误差减少到单位折断的顺序。相比之下,当特征值接近极点时,具有固定杆的理性过滤器加速的Krylov方法通常无法收敛到单位圆形准确性。在Arnoldi的背景下,我们展示了一种简单的重新启动策略,该策略在目标特征台上恢复了完全的精度。

We analyze the stability of a class of eigensolvers that target interior eigenvalues with rational filters. We show that subspace iteration with a rational filter is robust even when an eigenvalue is near a filter's pole. These dangerous eigenvalues contribute to large round-off errors in the first iteration, but are self-correcting in later iterations. For matrices with orthogonal eigenvectors (e.g., real-symmetric or complex Hermitian), two iterations is enough to reduce round-off errors to the order of the unit-round off. In contrast, Krylov methods accelerated by rational filters with fixed poles typically fail to converge to unit round-off accuracy when an eigenvalue is close to a pole. In the context of Arnoldi with shift-and-invert enhancement, we demonstrate a simple restart strategy that recovers full precision in the target eigenpairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源