论文标题

适应性注意网络,用于几个知识图的完成

Adaptive Attentional Network for Few-Shot Knowledge Graph Completion

论文作者

Sheng, Jiawei, Guo, Shu, Chen, Zhenyu, Yue, Juwei, Wang, Lihong, Liu, Tingwen, Xu, Hongbo

论文摘要

很少有知识图(kg)完成是当前研究的重点,在该研究中,每个任务都旨在查询未见关系的事实,鉴于其几乎没有弹奏的参考实体对。最近的尝试通过学习实体和参考文献的静态表示,忽略其动态属性,即实体可能在任务关系中表现出不同的作用,并且参考可能对查询做出不同的贡献。这项工作通过学习适应性实体和参考表示,提出了一个自适应注意网络,以完成几次kg的完成。具体而言,实体是由自适应邻居编码器建模的,以辨别其任务为导向的角色,而参考文献则由自适应查询感知的聚合器建模以区分其贡献。通过注意机制,实体和参考都可以捕获其精细的语义含义,从而使表达更具表现力。这将在几个射击场景中更可预测知识获取。在两个公共数据集上的链接预测中的评估表明,我们的方法实现了新的最新结果,其大小不同。

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源