论文标题

短距离振荡器链的相关功能

Correlation Functions for a Chain of Short Range Oscillators

论文作者

Mazzuca, Guido, Grava, Tamara, Kriecherbauer, Thomas, McLaughlin, Ken D. T. -R.

论文摘要

我们考虑了具有短距离相互作用的谐波振荡器系统,当对Gibbs测量的初始数据进行采样时,我们研究了它们的相关功能。这种相关功能显示出穿过链条的快速振荡。我们表明,相关函数始终具有两个最快的峰,这些峰向相反的方向移动并以速率$ t^{ - \ frac {1} {3}} $用于位置和动量相关性,以及用于能量相关的$ t^{ - \ frac { - \ frac {2} {3}} $。这些峰的形状是通过通风函数渐近描述的。此外,相关函数具有一些非通用峰,衰减速率较低。特别是,有一些峰值$ t^{ - \ frac { - \ frac {1} {4}} $用于位置和动量相关器,并使用速率$ t^{ - \ frac {1} {2}}} $用于能量相关器。这些峰的形状由Pearcey积分描述。对于我们的分析,至关重要的是间距的适当概括,即相邻粒子位置的差异,在最近的邻居相互作用的情况下用作空间变量。使用循环矩阵理论,我们能够引入一个既保留本地化和分析生存力的数量。这也使我们能够定义和分析用于最近邻居链的一些额外数量。最后,我们从数值上研究相关函数的演变后,将非线性扰动添加到我们的模型中。在我们的数值模拟的时间范围内,对线性情况的渐近描述似乎持续到小型非线性扰动中,而更强的非线性会改变形状和峰值的衰减速率。

We consider a system of harmonic oscillators with short range interactions and we study their correlation functions when the initial data is sampled with respect to the Gibbs measure. Such correlation functions display rapid oscillations that travel through the chain. We show that the correlation functions always have two fastest peaks which move in opposite directions and decay at rate $t^{-\frac{1}{3}}$ for position and momentum correlations and as $t^{-\frac{2}{3}}$ for energy correlations. The shape of these peaks is asymptotically described by the Airy function. Furthermore, the correlation functions have some non generic peaks with lower decay rates. In particular, there are peaks which decay at rate $t^{-\frac{1}{4}}$ for position and momentum correlators and with rate $t^{-\frac{1}{2}}$ for energy correlators. The shape of these peaks is described by the Pearcey integral. Crucial for our analysis is an appropriate generalisation of spacings, i.e. differences of the positions of neighbouring particles, that are used as spatial variables in the case of nearest neighbour interactions. Using the theory of circulant matrices we are able to introduce a quantity that retains both localisation and analytic viability. This also allows us to define and analyse some additional quantities used for nearest neighbour chains. Finally, we study numerically the evolution of the correlation functions after adding nonlinear perturbations to our model. Within the time range of our numerical simulations the asymptotic description of the linear case seems to persist for small nonlinear perturbations while stronger nonlinearities change shape and decay rates of the peaks significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源