论文标题
优化用张量网络进行癌症治疗的放射治疗计划
Optimizing Radiotherapy Plans for Cancer Treatment with Tensor Networks
论文作者
论文摘要
我们提出了张量网络方法在癌症治疗中的新应用,作为解决放射疗法中剂量优化问题的潜在工具。特别是,强度调节的放射治疗(IMRT)技术 - 允许治疗不规则和不均匀性肿瘤,同时降低健康器官的辐射毒性 - 是基于辐射束强度的优化。该优化旨在最大程度地提高治疗剂量为癌症的剂量,同时避免有可能通过辐射造成损害的器官。在这里,我们将剂量优化问题映射到搜索类似Ising的哈密顿量的基础状态,描述了一个长距离相互作用的量子台系统。最后,我们应用了一种树张量网络算法来找到哈密顿量的地面。特别是,我们提出了一个解剖情景,体现了前列腺癌治疗的体现。类似的方法可以应用于将来的混合经典量子算法,为在未来的医疗治疗中使用量子技术铺平了道路。
We present a novel application of Tensor Network methods in cancer treatment as a potential tool to solve the dose optimization problem in radiotherapy. In particular, the Intensity-Modulated Radiation Therapy (IMRT) technique - that allows treating irregular and inhomogeneous tumors while reducing the radiation toxicity on healthy organs - is based on the optimization of the radiation beamlets intensities. The optimization aims to maximize the delivery of the therapy dose to cancer while avoiding the organs at risk to prevent their damage by the radiation. Here, we map the dose optimization problem into the search of the ground state of an Ising-like Hamiltonian, describing a system of long-range interacting qubits. Finally, we apply a Tree Tensor Network algorithm to find the ground-state of the Hamiltonian. In particular, we present an anatomical scenario exemplifying a prostate cancer treatment. A similar approach can be applied to future hybrid classical-quantum algorithms, paving the way for the use of quantum technologies in future medical treatments.