论文标题

扩展的汉密尔顿原理作为耦合问题和耗散微观结构的统一理论

An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution

论文作者

Junker, Philipp, Balzani, Daniel

论文摘要

材料建模的既定策略是由基于能量的原理提供的,即可以得出以普通微分方程为单位的进化方程。但是,存在各种材料模型,还需要考虑非本地效应以捕获微观结构的演变。在这种情况下,微观结构的演变由部分微分方程描述。在这一贡献中,我们介绍了汉密尔顿的原理如何为所有状态变量的瞬态场方程提供一种身体上合理的策略。因此,我们首先展示了汉密尔顿的原则如何推广对刚体的固定行动的原则。此外,我们表明汉密尔顿原理背后的基本思想不仅限于等温机械过程。相比之下,我们提出了一个扩展的汉密尔顿原则,该原则适用于耦合问题和耗散微观结构的演变。例如,我们演示了用于热机电耦合问题的所有状态变量的场方程,即位移,温度和内部变量是由扩展的汉密尔顿功能的平稳性引起的。给出了与其他原则的关系,作为虚拟工作的原则和Onsager原则。最后,示例性的材料模型演示了如何将扩展的汉密尔顿原理用于热机械耦合的速率依赖性,速率无关和梯度增强的材料。

An established strategy for material modeling is provided by energy-based principles such that evolution equations in terms of ordinary differential equations can be derived. However, there exist a variety of material models that also need to take into account non-local effects to capture microstructure evolution. In this case, the evolution of microstructure is described by a partial differential equation. In this contribution, we present how Hamilton's principle provides a physically sound strategy for the derivation of transient field equations for all state variables. Therefore, we begin with a demonstration how Hamilton's principle generalizes the principle of stationary action for rigid bodies. Furthermore, we show that the basic idea behind Hamilton's principle is not restricted to isothermal mechanical processes. In contrast, we propose an extended Hamilton principle which is applicable to coupled problems and dissipative microstructure evolution. As example, we demonstrate how the field equations for all state variables for thermo-mechanically coupled problems, i.e. displacements, temperature, and internal variables, result from the stationarity of the extended Hamilton functional. The relation to other principles, as principle of virtual work and Onsager's principle, are given. Finally, exemplary material models demonstrate how to use the extended Hamilton principle for thermo-mechanically coupled rate-dependent, rate-independent, and gradient-enhanced materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源