论文标题

数据驱动的稀疏传感器放置基于ADMM实验的A-最佳设计

Data-driven sparse sensor placement based on A-optimal design of experiment with ADMM

论文作者

Nagata, Takayuki, Nonomura, Taku, Nakai, Kumi, Yamada, Keigo, Saito, Yuji, Ono, Shunsuke

论文摘要

本研究提出了一种基于近端分裂算法和使用乘数交替方向方法(ADMM)算法的实验设计的传感器选择方法。用随机传感器问题评估了所提出的方法的性能,并将其与先前提出的方法(例如贪婪方法和凸松弛)进行了比较。就A型标准而言,所提出的方法的性能比现有方法更好。此外,所提出的方法比贪婪的方法需要更长的计算时间,但是在大规模问题中的凸松弛时间要短。提出的方法应用于数据驱动的稀疏传感器选择问题。采用的数据集是NOAA OISST V2平均海面温度集。在大于潜在状态变量的传感器数量上,与先前提出的方法相比,根据A形式标准和重建误差,该方法表现出相似和更好的性能。

The present study proposes a sensor selection method based on the proximal splitting algorithm and the A-optimal design of experiment using the alternating direction method of multipliers (ADMM) algorithm. The performance of the proposed method was evaluated with a random sensor problem and compared with the previously proposed methods such as the greedy method and the convex relaxation. The performance of the proposed method is better than an existing method in terms of the A-optimality criterion. In addition, the proposed method requires longer computational time than the greedy method but it is quite shorter than the convex relaxation in large-scale problems. The proposed method was applied to the data-driven sparse-sensor-selection problem. A data set adopted is the NOAA OISST V2 mean sea surface temperature set. At the number of sensors larger than that of the latent state variables, the proposed method showed similar and better performances compared with previously proposed methods in terms of the A-optimality criterion and reconstruction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源