论文标题
局部 - 零组和bin的中心(x)
Locally-zero Groupoids and the Center of Bin(X)
论文作者
论文摘要
In this paper we introduce the notion of the center $ZBin(X)$ in the semigroup $Bin(X)$ of all binary systems on a set $X$, and show that if $(X,\bullet)\in ZBin(X)$, then $x\not=y$ implies $\{x,y\}=\{x\bullet y,y\bullet x\}$.Moreover, we show that当Zbin(x)$中的groupoid $(x,\ bullet)\时,仅当它是局部零groupoid时。
In this paper we introduce the notion of the center $ZBin(X)$ in the semigroup $Bin(X)$ of all binary systems on a set $X$, and show that if $(X,\bullet)\in ZBin(X)$, then $x\not=y$ implies $\{x,y\}=\{x\bullet y,y\bullet x\}$.Moreover, we show that a groupoid $(X,\bullet )\in ZBin(X)$ if and only if it is a locally-zero groupoid.