论文标题
MRO:机器人控制体系结构的运行时改编
MROS: Runtime Adaptation For Robot Control Architectures
论文作者
论文摘要
已知的构建自主机器人的尝试依赖于经常使用机器人操作系统平台(ROS)实现的复杂控制体系结构。在这些系统中需要适应运行时适应,以应对组件故障以及由动态环境引起的突发事件 - 否则会影响任务执行的可靠性和质量。现有关于如何在机器人技术中构建自适应系统的建议通常需要重新设计控制架构,并依靠机器人社区不熟悉的复杂工具。此外,它们很难在应用程序中重复使用。 本文介绍了MROS:基于模型的框架,用于基于ROS的机器人控制体系结构的运行时间适应。 MRO使用特定于领域的语言的组合来对体系结构变体进行建模并捕获任务质量问题,以及基于本体的MAPE-K和Meta-Control Visions的基于本体的实现,以进行运行时适应。在两个现实的ROS机器人示威者中应用MRO的实验结果在任务执行质量方面显示了我们方法的好处,以及MROS在机器人应用中的可扩展性和可重复性。
Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). Runtime adaptation is needed in these systems, to cope with component failures and with contingencies arising from dynamic environments-otherwise, these affect the reliability and quality of the mission execution. Existing proposals on how to build self-adaptive systems in robotics usually require a major re-design of the control architecture and rely on complex tools unfamiliar to the robotics community. Moreover, they are hard to reuse across applications. This paper presents MROS: a model-based framework for run-time adaptation of robot control architectures based on ROS. MROS uses a combination of domain-specific languages to model architectural variants and captures mission quality concerns, and an ontology-based implementation of the MAPE-K and meta-control visions for run-time adaptation. The experiment results obtained applying MROS in two realistic ROS-based robotic demonstrators show the benefits of our approach in terms of the quality of the mission execution, and MROS' extensibility and re-usability across robotic applications.