论文标题
辐射:恶劣天气中用于汽车感知的雷达数据集
RADIATE: A Radar Dataset for Automotive Perception in Bad Weather
论文作者
论文摘要
自动驾驶汽车的数据集对于感知系统的开发和基准测试至关重要。但是,在良好的天气条件下,大多数现有的数据集都被摄像机和激光雷达传感器捕获。在本文中,我们在不利天气(辐射)中介绍了雷达数据集,旨在促进对物体检测,跟踪和场景理解的研究,并使用雷达传感进行安全自动驾驶。辐射包括3个小时的带注释的雷达图像,其中总共有200k标记的道路参与者,平均每个雷达图像约为4.6个实例。它涵盖了在各种天气条件(例如太阳,夜晚,雨水,雾气和雪)和驾驶场景(例如停放,城市,高速公路和郊区)中的8种不同类别的演员,代表了不同级别的挑战。据我们所知,这是第一个公共雷达数据集,该数据集在公共道路上提供高分辨率的雷达图像,并标有大量的道路演员。在不利天气中收集的数据,例如雾和降雪是独一无二的。给出了基于雷达的对象检测和识别的一些基线结果,以表明在恶劣天气中使用雷达数据有望在恶劣的天气中使用,视觉和激光雷达可能会失败。 Radiate还具有立体图像,32通道激光雷达和GPS数据,该数据针对其他应用,例如传感器融合,定位和映射。可以通过http://pro.hw.ac.uk/radiate/访问公共数据集。
Datasets for autonomous cars are essential for the development and benchmarking of perception systems. However, most existing datasets are captured with camera and LiDAR sensors in good weather conditions. In this paper, we present the RAdar Dataset In Adverse weaThEr (RADIATE), aiming to facilitate research on object detection, tracking and scene understanding using radar sensing for safe autonomous driving. RADIATE includes 3 hours of annotated radar images with more than 200K labelled road actors in total, on average about 4.6 instances per radar image. It covers 8 different categories of actors in a variety of weather conditions (e.g., sun, night, rain, fog and snow) and driving scenarios (e.g., parked, urban, motorway and suburban), representing different levels of challenge. To the best of our knowledge, this is the first public radar dataset which provides high-resolution radar images on public roads with a large amount of road actors labelled. The data collected in adverse weather, e.g., fog and snowfall, is unique. Some baseline results of radar based object detection and recognition are given to show that the use of radar data is promising for automotive applications in bad weather, where vision and LiDAR can fail. RADIATE also has stereo images, 32-channel LiDAR and GPS data, directed at other applications such as sensor fusion, localisation and mapping. The public dataset can be accessed at http://pro.hw.ac.uk/radiate/.