论文标题

通过元学习的低资源域的无监督神经机器翻译

Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-Learning

论文作者

Park, Cheonbok, Tae, Yunwon, Kim, Taehee, Yang, Soyoung, Khan, Mohammad Azam, Park, Eunjeong, Choo, Jaegul

论文摘要

不受监督的机器翻译以未配对的单语言数据为培训数据,与监督机器翻译相当的性能。但是,它仍然患有数据筛选域。为了解决这个问题,本文提出了一种新颖的元学习算法,用于无监督的神经机器翻译(UNMT),该算法通过仅利用少量培训数据来训练该模型以适应另一个领域。我们假设领域通用知识是处理数据砂领域的重要因素。因此,我们扩展了元学习算法,该算法利用从高资源域中学到的知识来提高低资源UNMT的性能。我们的模型超过了最多2-4个BLEU分数的基于转移学习的方法。广泛的实验结果表明,我们提出的算法与快速适应相关,并且始终超过其他基线模型。

Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a novel meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains, to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-4 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源