论文标题
在凸体上的ra衍生物的不平等
Inequalities for the derivatives of the Radon transform on convex bodies
论文作者
论文摘要
已经证明,在原点对称的凸体上的rad rad rad rad rave rave sup-norm的体积1仅根据尺寸而从下方的正下界定。在本说明中,我们将此结果扩展到radton换的衍生物。我们还证明了这些衍生物的比较定理。
It has been proved that the sup-norm of the Radon transform of an arbitrary probability density on an origin-symmetric convex body of volume 1 is bounded from below by a positive constant depending only on the dimension. In this note we extend this result to the derivatives of the Radon transform. We also prove a comparison theorem for these derivatives.