论文标题

基于图像的自动化物种识别:虚拟数据增强是否可以克服采样不足的问题?

Image-based Automated Species Identification: Can Virtual Data Augmentation Overcome Problems of Insufficient Sampling?

论文作者

Klasen, Morris, Ahrens, Dirk, Eberle, Jonas, Steinhage, Volker

论文摘要

自动化物种的识别和划界具有挑战性,尤其是在罕见且经常几乎没有采样的物种中,这不允许对非特异性和种间变异的足够歧视。通过自动化的机器学习方法,可以从训练样本中学习高效有效的物种鉴定,最好解决由低或夸张的形态分化引起的典型问题。但是,在机器学习方面,有限的额外抽样仍然是一个关键挑战。 1在这项研究中,我们评估了两级数据增强方法是否可能有助于克服自动化视觉物种识别中稀缺训练数据的问题。第一级的视觉数据增强应用使用GAN方法采用经典的数据增强和伪造图像的方法。描述性特征向量来自VGG-16卷积神经网络(CNN)的瓶颈特征,然后使用全球平均池和PCA逐步降低维度,以防止过度拟合。第二级数据增强层通过在矢量空间中的过采样算法(SMOTE)采用合成在特征空间中的综合采样。我们的增强方法应用于两个具有挑战性的圣甲虫甲虫(鞘翅目)(鞘翅目),超过了非阐述的深度学习基线方法以及传统的2D形态学方法(Procrustes Anallys)。

Automated species identification and delimitation is challenging, particularly in rare and thus often scarcely sampled species, which do not allow sufficient discrimination of infraspecific versus interspecific variation. Typical problems arising from either low or exaggerated interspecific morphological differentiation are best met by automated methods of machine learning that learn efficient and effective species identification from training samples. However, limited infraspecific sampling remains a key challenge also in machine learning. 1In this study, we assessed whether a two-level data augmentation approach may help to overcome the problem of scarce training data in automated visual species identification. The first level of visual data augmentation applies classic approaches of data augmentation and generation of faked images using a GAN approach. Descriptive feature vectors are derived from bottleneck features of a VGG-16 convolutional neural network (CNN) that are then stepwise reduced in dimensionality using Global Average Pooling and PCA to prevent overfitting. The second level of data augmentation employs synthetic additional sampling in feature space by an oversampling algorithm in vector space (SMOTE). Applied on two challenging datasets of scarab beetles (Coleoptera), our augmentation approach outperformed a non-augmented deep learning baseline approach as well as a traditional 2D morphometric approach (Procrustes analysis).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源