论文标题
平衡的凸浮体
Convex Floating Bodies of Equilibrium
论文作者
论文摘要
我们研究Ulam的长期开放问题,这是欧几里得球是否是均匀密度的独特体,它将在任何方向上以平衡状态漂浮。我们在原点对称n维凸体中回答了这个问题,其相对于水的相对密度为1/2。对于n = 3,此结果是由于Falconer所致。
We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is 1/2. For n=3, this result is due to Falconer.