论文标题

最佳拍卖中的信息设计

Information Design in Optimal Auctions

论文作者

Chen, Yi-Chun, Yang, Xiangqian

论文摘要

我们在单单元拍卖环境中研究信息设计问题。信息设计师根据买家推断其二进制私人价值的独立私人信号。假设卖方采用了由于迈尔森(Myerson,1981)的回应而采取的最佳拍卖,我们既表征了买方最佳的信息结构,从而最大程度地提高了买家的盈余和卖方信息结构,从而最大程度地减少了卖方的收入。我们将两个信息设计问题转化为有限维的,受约束的优化问题,在这些问题中可以明确求解最佳信息结构。与一个买家(Roesler and Szentes,2017年)相比,我们表明,对于两个或更多的买家,对称买家最佳信息结构与对称的卖家智能信息结构不同。商品始终在卖方尊敬的信息结构下出售,但不在买方最佳的信息结构下出售。然而,随着买家的数量进入无穷大,两个对称信息结构都融合到无披露。我们还表明,在事前对称的环境中,不对称信息结构绝不是卖方尊敬的,但是比对称的买家 - 最佳信息结构可以为买家产生严格的盈余。

We study the information design problem in a single-unit auction setting. The information designer controls independent private signals according to which the buyers infer their binary private values. Assuming that the seller adopts the optimal auction due to Myerson (1981) in response, we characterize both the buyer-optimal information structure, which maximizes the buyers' surplus, and the sellerworst information structure, which minimizes the seller's revenue. We translate both information design problems into finite-dimensional, constrained optimization problems in which one can explicitly solve for the optimal information structures. In contrast to the case with one buyer (Roesler and Szentes, 2017), we show that with two or more buyers, the symmetric buyer-optimal information structure is different from the symmetric seller-worst information structure. The good is always sold under the seller-worst information structure but not under the buyer-optimal information structure. Nevertheless, as the number of buyers goes to infinity, both symmetric information structures converge to no disclosure. We also show that in an ex ante symmetric setting, an asymmetric information structure is never seller-worst but can generate a strictly higher surplus for the buyers than the symmetric buyer-optimal information structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源