论文标题
$ν= 2+3/8 $分数量子厅效应的非亚洲党派
A non-Abelian parton state for the $ν=2+3/8$ fractional quantum Hall effect
论文作者
论文摘要
在$ 5/2 $的均匀分母分数上,对分数量子厅效应(FQHE)的研究产生了引人入胜的结构。我们认为FQHE在另一个均匀的分母分数,即$ν= 2+3/8 $,在实验中已经观察到了一个发达且量化的Hall Plateau。我们检查了由“ $ \ bar {3} \ bar {2}^{2} {2} 1^{4} $描述的非亚伯利亚状态。我们对$ \ bar {3} \ bar {2}^{2} {2} 1^{4} $状态的$ \ bar {3} \ bar {3} \ bar的实验属性进行预测。
Fascinating structures have arisen from the study of the fractional quantum Hall effect (FQHE) at the even denominator fraction of $5/2$. We consider the FQHE at another even denominator fraction, namely $ν=2+3/8$, where a well-developed and quantized Hall plateau has been observed in experiments. We examine the non-Abelian state described by the "$\bar{3}\bar{2}^{2}1^{4}$" parton wave function and numerically demonstrate it to be a feasible candidate for the ground state at $ν=2+3/8$. We make predictions for experimentally measurable properties of the $\bar{3}\bar{2}^{2}1^{4}$ state that can reveal its underlying topological structure.