论文标题
加权同质表面奇异性同构为Brieskorn完整交集
Weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersections
论文作者
论文摘要
对于给定的正常表面奇点的拓扑类型,存在各种类型的复杂结构可以实现它。我们对以下问题感兴趣:找到几何属的最大值和最大理想周期的条件与最低良好良好分辨率的不额定周期相吻合。在本文中,我们从问题的角度研究了Brieskorn的加权同质表面奇异性同态同态完全交叉点。
For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.